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We extend Floquet’s Theorem, similar to that used in calculating electronic and opti-
cal band gaps in solid state physics (Bloch’s Theorem), to derive dispersion relations
for small-amplitude water wave propagation in the presence of an infinite array of
periodically arranged surface scatterers. For one-dimensional periodicity (stripes), we
find band gaps for wavevectors in the direction of periodicity corresponding to fre-
quency ranges which support only non-propagating standing waves, as a consequence
of multiple Bragg scattering. The dependence of these gaps on scatterer strength,
density, and water depth is analysed. In contrast to band gap behaviour in elec-
tronic, photonic, and acoustic systems, we find that the gaps here can increase with
excitation frequency ω. Thus, higher-order Bragg scattering can play an important
role in suppressing wave propagation. In simple two-dimensional periodic geometries
no complete band gaps are found, implying that there are always certain directions
which support propagating waves. Evanescent modes offer one qualitative reason for
this finding.

1. Introduction
Scattering of monochromatic acoustic, electromagnetic, or electronic wave functions

is described by the Helmholtz equation, a boundary condition at the scatterer inter-
face, and a radiation condition far away from the body. These conditions uniquely
solve most scattering problems. Although surface perturbations on an ideal fluid
propagate as waves, and general principles of scattering theory from other contexts
apply, the incompressibility condition in the bulk liquid has no spatial variation. Thus,
scattering can occur only through interactions with localized geometrical variation
of the boundaries, or localized variations in the conditions imposed at the bound-
aries. An example of the former is the scattering of water waves from variations in
bottom depth studied by Mei (1985), Belzons, Guazzelli & Parodi (1988), Davies,
Guazzelli & Belzons (1989) and Mitra & Greenberg (1984), which has implications
for design of underwater breakwaters (Mei, Hara & Naciri 1988), long distance
ocean wave propagation (Elter & Molyneaux 1972), wave propagation over rippled
beds near beaches (Mei 1985; Naciri & Mei 1988; Davies et al. 1989 and Kirby
1986), and thirdly sound propagation of superfluid helium films as discussed by
Kleinert (1990). Periodic bottom depths, or periodically arranged impenetrable ob-
stacles piercing the sea surface, have also been studied theoretically with multiple
scattering analyses by Mei (1983), Kagemoto & Yue (1986) and Porter & Evans
(1995). Integral equation techniques have been applied to periodic breakwaters by
Fernyhough & Evans (1995) and to bottom depths by Black, Mei & Bray (1971).
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ẑ
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Figure 1. Schematic of periodic scatterers at the liquid interface. The depth is a constant h, and the
bending rigidity and/or surface tension is D2 and/or σ2 inside the shaded regions and D1 and/or σ1

outside. Depicted here are scatterers which have sharp discontinuities in D and σ along the surface,
in (a) one-dimensional stripes of width w, and (b) square array of disks of radius R0.

In these studies the possibility of resonant Bragg scattering from finite structural
arrays was recognized by Mei (1983), Davies et al. (1989) and Mitra & Greenberg
(1984); however, only first-order Bragg scattering has been discussed. Random bot-
toms has also been studied using shallow water theory, where interesting localization
behaviour has been theoretically predicted and experimentally observed by Devillard,
Dunlop & Souillard (1988), and Belzons et al. (1988) and Elter & Molyneaux (1972),
respectively.

In this paper we consider the scattering that occurs when surface constitutive
parameters, such as surface tension or surface bending rigidity in the boundary
conditions are spatially varying along the interface. Lucassen-Reynders & Lucassen
(1969) show that surfactant deposition at the air–water interface drastically attenuates
wave propagation, and multiple surface wave scattering from surfactant concentra-
tion variations has been suggested by Chou & Nelson (1994) as one contributing
mechanism. Monolayers of surfactants at air–water interfaces can phase separate into
periodic domains as a consequence of line tension and microscopic dipolar interac-
tions (Andelman, Brochard & Joanny 1987 and Knobler & Desai 1992). Similarly, ice
floes, which vary the surface mass density as well as surface bending moments at the
air–sea interface, also scatter water waves and attenuate wave energy in Marginal Ice
Zones (MIZ) (Fox & Squire 1990 and Squire et al. 1995). Here, regular patterns of
surface ice thickness can form due to periodic convection of freezing surface waters,
or current instabilities of a freezing mushy ice zone. Also, stress from incident water
waves on an ice sheet can break strips of ice off the leading edge and form very
long, regular stripes of ice separated by open sea (Squire et al. 1995). An approximate
two-dimensional periodicity also exists in regions of pancake ice, where circular floes
occupy a high filling fraction of the surface. All of the physical systems mentioned
are schematically depicted in figure 1 in the limit of perfect periodicity.

Reflection and transmission coefficients of water wave scattering from semi-infinite
flexible docks have been calculated using variational methods and numerical solution
of integral equations by Squire et al. (1995), Liu & Mollo-Christensen (1988), and
Meylan & Squire (1994); however, only the amplitudes have been explicitly calculated.
When considering multiple scattering, however, the phase is a critical variable to be
considered as it affects whether waves interfere constructively or destructively. An
integral equation solution to the reflection and transmission coefficients of scattering
from a semi-infinite surface tension discontinuity has been found by Gou, Messiter &
Schulze (1993), but the energy conservation was applied a posteori and phase shifts
were not found.
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Irrespective of the numerous treatments of water wave scattering, we show here
that an exact solution to the dispersion relation of surface waves propagating in
an infinite periodic array of surface scatterers (such as ice floes) can be simply
calculated. The results represent the effects of multiple scattering and allow easy
physical interpretation.

In the following Section we formulate the model describing surface wave propa-
gation in the presence of an infinite periodic array of surface deformable scatterers
(figure 1). We adapt a technique (Floquet’s Theorem) often used in solid state physics,
to study multiple surface wave scattering. An analogous ‘phase ansatz’ was used by
Fernyhough & Evans (1995) and Porter & Evans (1995) to study surface wave scatter-
ing from rectangular breakwaters. In our problem, the surface boundary conditions
are spatially periodic and are cast into a matrix equation with eigenvalues which
determine wave dispersion.

In § 3, we consider both one- and two-dimensional arrays of surface scatterers
(see figure 1). The physical features of the dispersion relations are displayed and
qualitatively explained. We find stop bands, or band gaps, analogous to those found
in other systems (Ashcroft & Mermin 1976; McCall et al. 1991; Sigalas & Economu
1992), where as a consequence of the coupling between the periodic nature of the
scatterers and the plane-wave-decomposed velocity field, the dispersion relation ω(k)
has jumps between which the excitation frequencies do not correspond to extended
plane waves, but rather localized, standing waves. The wavevectors where these
frequency jumps occur define ‘Bragg’ points (one-dimension) or lines (two-dimension)
in Fourier space where resonant multiple scattering interferes in such a way that
waves do not propagate. Rather than provide an exhaustive array of numerical
calculations, we emphasize the physical phenomena of band gaps and their dependence
on parameters such as scattering strength, water depth, and surface scatterer filling
fraction.

In § 4, we mention the general features of the basic results and their implications for
multiple scattering in natural and manmade applications, such as wave propagation in
ice fields and arrays of surface plates. In the Appendix, we generalize Floquet theory
or Bloch’s Theorem to include dynamics governed by periodic boundary conditions.

2. Model of periodic surface waves
The dynamics of an interface overlying an ideal fluid of depth h (figure 1) is

derived by balancing surface stresses and deriving dynamical equations which govern
surface wave propagation. The analyses are restricted to surface scatterers; structures
are assumed to have small thicknesses d (d � λ, h, where λ is any wavelength), lie
entirely at the interface z ' 0, and do not change the domain over which Laplace’s
equation for the velocity potential holds. Examples are thin plates with bending
stiffness or domains of surface-active materials which locally decrease surface tension.
The scatterers are periodic and their in-plane interfacial positions are assumed fixed.

2.1. Surface water waves

The motion of the interface is coupled to the bulk flow which is described by the
Euler equation for incompressible ideal flows,

∂tv + (v · ∇)v = −1

ρ
∇p+ ρg, z < η(r, t), (2.1)
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where ρ is the bulk fluid density, ρg ≡ −ρgẑ is the external body force density due to
gravity, p is the dynamic pressure, and η(r, t) is the surface deformation as a function
of surface coordinate r ≡ (x, y). We neglect all dynamical effects of the upper fluid,
air. By assuming irrotational flows, the velocity is potential, v ≡ ∇ϕ. Hence,

∇ · v = ∇2ϕ(r, z, t) = (∇2
⊥ + ∂2

z )ϕ(r, z, t) = 0, z < η(r), (2.2)

where ∇2
⊥ ≡ ∂2

x + ∂2
y is the two-dimensional Laplacian in the coordinates of figure 1.

The linearized kinematic conditions at the free interface and the impenetrable bottom
(ẑ · v(z = −h) = 0) are

lim
z→0−

∂zϕ(r, z, t) = ∂tη (2.3)

and

lim
z→−h+

∂zϕ(r, z, t) = 0, (2.4)

respectively. The linearized normal fluid stress at the interface is

Pnn ≡ lim
z→0−

ρ [∂tϕ+ gη(r, t)] ' Pzz, (2.5)

where we have assumed the absence of externally imposed stream flow and that the
only disturbances are in the form of dynamic surface waves. The fluid stress Pnn
is balanced by material restoring forces such as those due to surface bending and
stretching. In the absence of fluid viscous stresses, the application of surface stresses
must be carefully applied to ensure conservation of ẑ-component forces, torques, and
bending moments. These forces and the energy are manifestly conserved when the
surface stresses are derived from an energy functional for the bulk fluid plus interface.
For example, Pzz and gradients of σ(r) have to be considered in inviscid fluids to
conserve wave energy. Thus, the net ẑ-component surface stress balance reads[

∇⊥ · (σ(r)∇⊥)− ∇2
⊥(D(r)∇2

⊥)
]
η(r, t) = Pzz (2.6)

which upon taking the time derivative and using (2.3) becomes

lim
z→0−

[
∇⊥ · (σ(r)∇⊥)− ∇2

⊥(D(r)∇2
⊥)
]
∂zϕ(r, z, t) = ∂tPzz, (2.7)

where D(r) and σ(r) are the surface flexural rigidity and surface tension respectively. In
(2.7), we have neglected the rotational inertial terms in the surface bending stresses,
valid when ω2 � Eρ−1

s /λ
2 (ρs is the bulk mass density of the surface material).

Within thin plate theory, D = Ed3/12(1 − s2) where E and s are Young’s modulus
and Poisson’s ratio of the surface material in its bulk phase.

Consider dynamical variables with a time dependence of the form e−iωt. In the
frequency domain, we combine the time derivative of the ẑ-component stresses and
use (2.3) and (2.5) to obtain

lim
z→0−

[
ρω2ϕ(r, z)−

(
ρg − ∇⊥ · (σ(r)∇⊥) + ∇2

⊥(D(r)∇2
⊥)
)
∂zϕ(r, z)

]
≡
[
ρω2 lim

z→0−
−L(r, ω)

]
ϕ(r, z) = 0. (2.8)

Equations (2.8) and (2.2) determine the velocity potential with frequency ω. The
effects of spatially varying surface properties are implicit in the boundary condition
(2.8). In the limit of uniform σ(r) = σ and D(r, t) = D, ϕ ∝ e±ik·r cosh k(h + z), from
which we obtain the standard gravity–capillary–flexural wave dispersion relation

ω2 =

(
gk +

σ

ρ
k3 +

D

ρ
k5

)
tanh kh, (2.9)
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where k = |k| = 2π/λ. This relation is valid only for uniform surfaces or very far
(many wavelengths) from localized spatial inhomogeneities of the surface parameters
σ(r) and D(r).

However, when σ and/or D are not uniform, surface waves can diffract or refract
from the regions of varying surface properties and the Fourier modes of the velocity
potential at the interface mix with those of the surface variations. The remainder
of this study deals with periodic variations in σ(r) and D(r) where the boundary
condition (2.8) is to be used to solve ∇2ϕ(z < 0) = 0. Since the effects we will consider
arise from multiple scattering of the surface waves, we require for real fluids a viscous
dissipation length

k−1
d ∼ min

[
g3

νω5
,
σ

ρνω
,
1

ν

(
D3

ρ3ω

)1/5
]
� a, (2.10)

where ν is the kinematic viscosity, and σ, D above are their minimum values along the
periodic interface. We have assumed (2.10) holds by treating ideal fluids. Although
our treatment is linear in small surface displacements, there are no constraints on the
periodic spatial variations of D, σ and scattering can be strong.

2.2. Bloch functions and periodic solutions

The following analysis is similar to the treatment of a single particle electronic wave
function in a periodic potential. Further details are given in Chapters 5 and 8 of
Ashcroft & Mermin (1976). Joannopoulos, Meade & Winn (1995) also consider
light propagation through a medium with periodic inclusions of different dielectric
constants. These references describe in detail the terminology used; however, our
surface scattering problem is sufficiently different that we will give a largely complete
formulation below. Near (within a few wavelengths) sources or variations in σ or D,
the velocity potential cannot be represented by a single wavevector component and
must be decomposed into a complete set of plane wave eigenfunctions. For example,
the choice

ϕ(r, z) =
∑
k

ϕk eik·r cosh k(h+ z)

cosh kh
(2.11)

manifestly satisfies Laplace’s equation and (2.4). For the surface scatterers, we consider
one- and two-dimensional periodicities, with lattice vectors a (see figure 1). Since the
surface properties are periodic in ai,

D(r + niai) = D(r), (2.12)

where ni are integers and index summation convention is used. Thus, the Fourier
decomposition of σ(r), D(r) can be written in the form

σ(r) =
∑
m,n

σ(G)eiG·r , D(r) =
∑
m,n

D(G)eiG·r , (2.13)
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where G are the corresponding reciprocal lattice vectors for stripe, square, and
triangular lattices with periodicity a,

G(m) =
2πm

a
x̂ ≡ mG(1) (stripes),

G(m, n) =
2πm

a
x̂+

2πn

a
ŷ (square),

G(m, n) =
4πm√

3a
x̂+

2πn√
3a

(x̂−
√

3ŷ) (triangular),


(2.14)

with m, n integers. The Fourier decomposition of σ(r) and D(r) are completely rep-
resented by these sets of wavevectors. Furthermore, since the set {G} also forms a
periodic lattice in wavevector space, any particular reciprocal lattice vector in the set
{G} for each type of lattice can be constructed by a countable number of others within
that set. In fact, the lattice in wavevector space has the same symmetry properties as
the real space lattice defined by σ(r), D(r). We exploit the periodicity of D(r) in the
boundary condition (2.8) and use Bloch’s theorem (a multidimensional generalization
of Floquet’s Theorem), to find another representation related to (2.11).

Floquet’s Theorem (or the multidimensional generalization, Bloch’s Theorem) states
that a solution to a linear differential equation with periodic coefficients can be
represented as a product of a phase factor and another function which is invariant
under the periodicity of the coefficients (Mathews & Walker 1970):

ϕ(r, z) ≡ e−iq·rφ(r, z) = e−iq·r
∑
G

φq(G)eiG·r cosh |q − G|(h+ z)

cosh |q − G|h (2.15)

where q is the phase parameter to be related to k, the physical wavevector. The
last equality arises from expanding the periodic function φ(r + niai) ≡ φ(r) in a
manner identical to D(r) or σ(r). Although the periodicity in this problem resides in
the operator L(r, z, ω) and not in ∇2ϕ = 0, we explicitly demonstrate the validity of
Bloch’s Theorem and (2.15) in the Appendix.

Now consider a large array of scatterers that are periodically repeated to construct
an infinite system. Application of periodic boundary conditions on the entire array
of scatterers (Born–von Kármán boundary conditions) requires

ϕ(r, z) = ϕ(r +Niai, z), (2.16)

where Ni is the total number of scatterers in the i-direction (such that Nia is the system
size in the i-direction) which is repeated in the periodic scheme. Upon substitution of
(2.15) into (2.16), q is restricted to the real values

q · ai =
2πn

Ni

. (2.17)

Thus, the granularity of q is determined by the total number of scatterers. Since by
construction a|G(1)| = 2π in one dimension and a1 ·G(1, 0) = a2 ·G(0, 1) = 2π in two
dimensions, the values of q are defined by

q =
n

N
G(1), 1D Periodicity,

q =
n1

N1

G(1, 0) +
n2

N2

G(0, 1), 2D Periodicity.

 (2.18)

If we choose the values of n, n1, n2 such that n ∈ [−N/2, N/2], ni ∈ [−Ni/2, Ni/2],
the maximal values of the ‘reduced wavevector’ |q| in the (0, 1) and (1, 0) directions
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are |G(0, 1)|/2 and |G(1, 0)|/2, respectively. This region of q-space defines the first
Brillouin Zone (BZ). For example, in one dimension, this first zone is specified by
qx ∈ [−π/a, π/a]. Comparison of (2.11) and (2.15) shows that the physical wavevectors
k are represented by q, with very short wavelengths described by q with added
multiples of G.

Direct substitution of (2.15) into (2.8) yields for each of the N (one dimension) or
N1N2 (two dimensions) values of q,

ρ
(
ω2 − Ω2

q(G)
)
φq(G) =

∑
G′ 6=G

[
|q − G|2|q − G′|3D(G − G′)

+(q − G′) · (q − G)|q − G′|σ(G − G′)
]

tanh |q − G′|hφq(G′) (2.19)

where

Ω2
q(G) ≡

(
g|q − G|+ σ0

ρ
|q − G|3 +

D0

ρ
|q − G|5

)
tanh |q − G|h (2.20)

and σ0 = σ(~0) and D0 = D(~0) are the spatially averaged (zero wavevector) surface
properties. In (2.19) have ensured q lies in the first BZ demanded by (2.18) and
our choice of range of ni by using the fact that any sum or difference of reciprocal
lattice vectors yields another reciprocal lattice vector, G − G′ = G′′. Since G′ ≡
m′G(1, 0) + n′G(0, 1), the sum

∑
G′ ≡

∑
m′ ,n′ . Equation (2.19) is the fundamental

matrix equation that determines the relationship between frequency ω and reduced
wavevector q. Instead of having a coupled equation for all physical wavevectors,
(2.19) and (2.20) couple the coefficients φq(G), φq(G

′), φq(G
′′), . . ., or only the velocity

potentials with wavevectors which differ by multiples of G. The choice of restricting
q to the first BZ by proper choice of G is the reduced-zone scheme and is useful when
calculating and presenting the eigenvalues of (2.19). The set of N or N1N2 eigenvalues
(ρω2) will be associated with surface deformations with physical wavevectors q + G.
For example, at a fixed q, the first eigenvalue of (2.19) corresponds to k = q, while
the next higher eigenvalue corresponds to k = q + G(1, 0), and so on.

For the sake of clarity and simplicity, we will only consider the case where σ = 0
relevant for long flexural–gravity waves (2π(σ/ρg)1/2 � λ � 2π(D/σ)1/2). Thus the
scattering originates only from the the periodically varying bending rigidities at the
interface. The extension to include σ(G) 6= 0 for studying surface waves in the presence
of periodic surfactant coverage is straightforward. The matrix equation affords an
eigenvalue spectrum corresponding to ρω2 for each value of q. Thus, the square-root
of the eigenvalues gives the dispersion relation for surface waves propagating over
periodic surfaces.

The matrix (2.19) can be written in an inherently symmetric form (hence all eigen-
values are real as expected from an ideal, stable system) by considering renormalized
Fourier coefficients φ′q(G) = |q − G| tanh |q − G|hφq(G). The problem is therefore a

generalized eigenvalue problem A′φ′q = ρω2Bφ′q where B is diagonal. Applying the
inverse of the square-root of B to both sides (Cholesky decomposition), the problem
is recast into a symmetric eigenvalue problem,

det |A− ρ(ω2 − Ω2
q)I | = 0, (2.21)

where

A(G 6= G′) = D(G − G′)|q − G|5/2|q − G′|5/2 tanh1/2 |q − G|h tanh1/2 |q − G′|h. (2.22)
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The above symmetrization facilitates the calculation and computational convergence
of the eigenvalues ρω2 of A+ ρΩ2

q I .
We now input specific one- and two-dimensional periodic ‘surface potentials’ D(G−

G′). In one dimension, we consider strips of scatterers corresponding to a surface
sheet with alternating bending rigidities D(x) = D1 or D(x) = D2 depending on
whether x is inside or outside a strip, respectively (see figure 1a). For two-dimensional
periodic surface scatterers, we consider both square (figure 1b) and triangular (not
shown) lattices of circular disks of radius R0. Inside each disk, D = D2, while
outside D = D1. The Fourier transforms of the above scattering potentials are,

D(~0) = D0 ≡ D̄ = (1− f)D1 + fD2, and

D(G 6=~0) =
D2 − D1

π|G| sin(|G|af), 1D periodicity,

D(G 6=~0) = 2f
(D2 − D1)

|G|R0

J1(|G|R0) 2D periodicity,

 (2.23)

where f is the fraction of area covered by the D2 material, and G is a reciprocal
lattice vector from the appropriate set in (2.14). Our choices above are numerically
the most laborious due to Gibb’s phenomenon at the sharp discontinuities in D(r);
nonetheless, we find that the eigensolutions to (2.21) converge rapidly as a function
of matrix size.

3. Results and discussion
We numerically solve the eigenvalue problem represented by (2.21) and (2.22) for

each q (in the Ni → ∞ limit, q becomes a continuous variable) using standard
methods described in Press et al. (1992). Typically, 256 different G (or (m, n) pairs) are
taken (corresponding to a 256× 256 matrix) for both the one- and two-dimensional
cases, such that the lowest 4–6 eigenvalues do not change appreciably (< 1%) upon
halving the matrix size. The calculations converge very efficiently for the lowest 4–6
eigenvalues especially in two dimensions because the additional Bessel function J1

makes the off-diagonal elements diminish relatively faster away from the diagonal.
The matrix calculations for smoother variations in D(r) are even simpler; for example,
A is tridiagonal when D is sinusoidal. In our numerical plots, all distances are scaled
with respect to lattice spacing, and wavevectors are measured in units of a−1. The
frequency is non-dimensionalized and plotted in units of (g/a)1/2, and the bending
rigidity is shown in units of ρga4/π4.

3.1. One-dimensional periodicity

The choice D1 = 0, D2 6= 0 is appropriate for open water punctuated by flexible strips
and illustrates the difference between gravity and bending waves. For concreteness,
consider D2 = 3.0, which for the Young’s modulus and Poisson’s ratio of sea ice
(E = 6 × 1010 dynes cm−1 and s = 0.3), and periodicities of 1.0 m, corresponds
to a d ∼ 0.8 cm ice layer. At this coverage, the dispersion within the ice sheet is
predominately determined by bending forces (compare the terms gq and D̄q5/ρ)
except at large wavelengths such that q . (ρg/D̄)1/4.

The first few eigenvalues, or bands, (labelled by n) in the dispersion relation for wave
propagating in an array of one-dimensional periodic surface scatterers are plotted in
figure 2. Here, h = ∞, the filling fraction f = 0.6, and D2 = 3.0. The right-hand panel
shows the dispersion relation for qy = 0 as a function of qx, the reduced wavevector
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Figure 2. The dispersion relation, or band structure of surface waves (h = ∞) in the presence of
discontinuous stripes of surface bending rigidity D(x). Lengths are measured in units of periodicity
a and frequencies are measured in units of (g/a)1/2. Surface values used are σ = 0, D1 = 0, D2 = 3.0,
and filling fraction w/a ≡ f = 0.6. The right-hand panel plots ω(qx, 0), the left, ω(0, qy), where
ω(q) = ω(−q). The dispersion relation (qy = 0) is plotted in the reduced-zone scheme where for
example, the first (n = 1) eigenvalues correspond to qx = kx, n = 2 correspond to kx = |G(1)| − qx,
n = 3 to kx = |G(1)| + qx, n = 4 to 2|G(1)| − qx, etc. Note the first small band gap between
ω(P1) ' 1.77 and ω(P2) ' 1.79. Dispersion of waves with a component in the ky-direction are
shown in the left-hand panel. Waves travelling in the ŷ-direction are described by the n = 1
eigenvalues, while n = 2, 3 correspond to k = ±qy ŷ + G(1).

k = p/a

D2  >  D1

Figure 3. Wave configurations (qx, 0) near the wavevectors of the first gap. The solid(dotted)
modes are continuous with bands terminating at qx = π/a± ε or P1(P2).

in the direction of periodicity. We have plotted the axis according to the reduced-zone
scheme where the dispersion relations are folded at every half unit reciprocal lattice
vector G(1)/2, i.e. at (qx = 0, π) where Bragg scattering of surface waves occurs. The
different ω found from the eigenvalues correspond to wavevectors kx related to the
plotted values of qx shifted by appropriate multiples of reciprocal lattice vectors G(1).
If ω(k) were plotted as a function of physical wavevector kx instead, there would be
one curve following P0−P1−P2−P3−P4− . . ., as physical wavevector kx increased.
The curve in this representation would be punctuated by discontinuous jumps at
certain wavevectors (multiples of G(1)/2) corresponding to Bragg scattering.

The left-hand panel shows ω(0, qy); only the lowest branch (n = 1) corresponds to a
wave propagating in the ŷ-direction. Interestingly, the motions corresponding to this
mode have no variation in the x̂-direction. For the set of parameters considered, this
wave has a predominantly gravity-wave-like dispersion. The higher branches n = 2, 3
correspond to k = qyŷ + G(1) and n = 4, 5 correspond to k = qyŷ + 2G(1).
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The calculated gaps (such as ω(P1) − ω(P2)) are discontinuities in ω(kx) and are
associated with multiple Bragg scattering. Physically, oscillations with frequencies
ω(P1)[ω(P2)] correspond to deformations with most of the wave nodes[antinodes]
located in the low-D1 surface rigidity regions. The origin of the first gap ω(P2)−ω(P1)
is illustrated in figure 3. The solid and dotted curves represent two possible surface
deformation waves of nearly the same wavelength λ ' 2π/qx ' 2a. Since bending
energy is proportional to curvature squared, the mode represented by the solid curve
will have higher energy and frequency since D2 > D1. Another mode of nearly the
same wavelength (dotted line) exists at a lower frequency. These two configurations
correspond to P2(solid) and P1(dotted) respectively. Although there is an infinite series
of gaps in the kx-direction, ω(0, qy) increases indefinitely along qy . Thus, for any real
ω, propagating modes in some direction (with a qy component) can be found and
complete (i.e. in all directions) band gaps do not exist. Also note that the gaps can
increase at higher frequencies, e.g. ω(P6) − ω(P5) > ω(P4) − ω(P3) > ω(P2) − ω(P1).
This behaviour is not seen in typical periodic acoustic or electromagnetic dispersion
relations, and is a consequence of the ∇2

⊥(D(r)∇2
⊥) term in the surface operator

L(r, ω) which enhances the influence of variations in D(r) at higher wavevectors.
Waves with wavevectors near band gaps are standing because their group velocities
cg = ∂qω(q) → 0 as a Bragg plane (qx = (0, π), qy = 0) is approached due to the
inherent q ↔ −q symmetry of ω(q). The sensitivity to D1 is also shown in greater
detail in figure 4(a); as D1 increases the dispersion relation develops more of an
upward curvature shown in figure 4(b) indicative of the increasing bending wave
characteristics, due to the overall increase in surface bending rigidity. The gap widths
may also increase with decreasing surface contrast |D1−D2| (cf. dotted vs. solid curves
in figure 4(a)). This origin of this behaviour is the higher-order gradients acting on
D(r) in the dynamical boundary condition (2.8), and is absent in the periodic photonic,
acoustic, and electronic problems.

Figure 5 shows the positions and widths of the first three band gaps (labelled
` corresponding to ω(P`+1) − ω(P`)) as a function of depth h for filling fraction
f = 0.8, D1 = 0 and D2 = 3.0. Wave motions reach a depth of ∼ |k|−1, thus depth
effects become important only when |k|h . 1 such that the impenetrable bottom
begins to influence the dispersion (2.9). Therefore, the higher-order band gaps (higher
|k|) saturate to their h→∞ limits at smaller depths.

Band gaps are sensitive to both filling fraction f and D1. Figures 6(a) and 6(b) show
the filling fraction dependence of the first three gaps for D2 = 3.0, h = ∞, and D1 = 0
and 1.0, respectively. Band gap widths are not monotonic functions of f and generally
increase near larger values of f when D2 > D1 ∼ 0. As expected, the gap frequencies
are generally larger for smaller f when D1 > D2 (not shown). All gaps disappear at
f = 0 and f = 1 as the interface becomes uniform. Note that for the second (and
higher) bands, the gap widths alternate and disappear for special values of f. This
property is a consequence of the alternating behaviour of D(G). Higher bands have
qualitatively similar behaviour but are at much higher frequencies, beyond the scale
of figure 6.

The variation in band gaps as a function of D1 is also analysed. The first, second,
and third gaps as functions of D1/D2 (D2 = 3.0) for h = ∞ and f = 0.6 and f = 0.8 are
plotted in figures 7(a), 7(b) and 7(c), respectively. The first gap, shown in figure 7(a)
is most sensitive to variations in D1 near D1 = 0. The gap increases rapidly from a
small constant value as D1 is increased until it vanishes as D1 approaches D2, when
the surface becomes uniform. At this point the dispersion relation is governed by (2.9)
in all directions. Figures 7(b) and 7(c) however, show special values of D1 6= D2 where
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Figure 4. An expanded plot of the first band gap for D2 = 3.0 and various D1. (a) Solid curves,
D1 = 0 (P1, P2 labelled as in 2); dashed curves, D1 = 0.03. The repeated zone notation is indicated.
(b) Solid curves, D1 = 2.0; dashed curves, D1 = 6.0

the second and higher gaps vanish, similar to the vanishing of gaps as a function of
f shown in figure 6.

3.2. Two-dimensional periodicity

We consider surface wave propagation through a periodic field of circular scatterers
arranged in a two-dimensional lattice as shown in figure 1(b). The single scattering
analogue has been considered in the context of wave scattering from a circular ice
floe (Meylan & Squire 1996), or a circular patch of surfactant (Chou, Lucas & Stone
1995). The two-dimensional dispersion relations depend in a more complicated way
on the direction of q. We show the results for square and triangular lattices, where
|G(0, 1)| = |G(1, 0)| = 2π/a and R0 = a(f/π)1/2 for square lattices, and |G(0, 1)| =

|G(1, 0)| = 4π/
√

3a and R0 = 31/4a(f/2π)1/2 for triangular lattices. In the two-
dimensional plots, we have chosen D2 = 100.0 and D1 = 0, corresponding to d ∼
2.6 cm of ice when a = 100 cm. We arbitrarily used f = 0.3 for the square lattice and
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Figure 5. The first three band gaps at (qx, qy) = (π, 0) as a function of water depth for D1 = 0,
D2 = 3.0, f = 0.8. The height of the hatched regions labelled ` = 1, 2, 3 correspond to ω(P2)−ω(P1),
ω(P4)− ω(P3) and ω(P6)− ω(P5), respectively.
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Figure 6. The first three band gaps as a function of filling fraction f = w/a for (a) D1 = 0 and
(b) D1 = 1, all other parameters are those of figure 5.

f = 0.4 for the triangular lattice. Note that the maximum filling corresponding to
close packing is f = π/4 and π/2

√
3 for the square and triangular lattices respectively.

The dispersion relations shown in figure 8 may qualitatively represent monochromatic
wave propagation through pancake ice zones.

The first lowest eigenvalues (ω) for waves propagating over square and triangular
lattices are plotted with q along the paths in the first two-dimensional BZ depicted
below each plot in figure 8. The dashed curve corresponds to wave propagation over
a uniform flexural rigidity of D̄ in the repeated-zone scheme. The representative high
symmetry points in wavevector space equivalent to q = 0,G(1, 0)/2, and (G(1, 0) +
G(0, 1))/2 are labelled Γ , X and M, respectively. The qualitative features depicted
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Figure 7. The first three band gaps, (a), (b), and (c), respectively as a function of bending rigidity
mismatch D1/D2 at infinite depth and filling fractions f = 0.6 and 0.8.

in figure 8 are not as sensitive to the parameters as the one-dimensional periodicity
considered above, although variations in band gap widths as functions of f and
D1/D2 also occur at the Bragg points X and M. Due to the two-dimensional nature,
the dispersion relation is highly degenerate along the plotted symmetry directions,
and is usually made more apparent by plotting ω(k) along a specific direction.
However, the main result displayed by figure 8 is that the gaps at Γ , X and M do not
overlap each other in frequency, i.e. certain directions will always support propagating
waves.
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Figure 8. Two-dimensional infinite depth band structure for (a) square and (b) triangular lattice of
circular plates of radius R0. D2 = 100.0, D1 = 0. The filling fractions f used are 0.3 in (a) and 0.4
in (b). The first BZ in Fourier space (where q is restricted to the shaded regions) is depicted below
each plot, with standard symmetry points labelled.

3.3. Complete gaps; shallow water waves

After a modest parameter search in f, D1, D2 and h, we find no complete low-order
band gaps in two dimensions: there are always certain directions in which waves can
propagate. This property is in contrast to photonic and phononic band structure,
where complete gaps have been found by Joannopoulos et al. (1995), Kushwaha
et al. (1993) and Sigalas & Economu (1992). The difference lies in the nature of
the wave scattering and the boundary conditions at the scatterer edges. Firstly, the
dispersion caused by wave impedance mismatch due to variations in D is weak, i.e.
since ω2 ' Diq5, Di must change by a considerable amount for the wavelengths 2π/q
that would be excited in an infinite domain of uniform Di to change appreciably
at any given ω. Secondly, although higher derivatives η(r, t) are required to be
discontinuous, the lower derivatives are continuous which limits the reflection from
an edge discontinuity in D. Thus, scattering is not particularly strong in this system.
Furthermore, the evanescent modes can couple the scatterers at high filling fractions.
This is a direct analogy to total internal reflection of light by a prism. Bringing another
prism close enough to the external surface captures the evanescent electromagnetic
wave and couples the light wave out of the original prism. In the water scattering
problem, these evanescent modes decay exponentially away from a surface scatterer
with a length scale set by the depth, except in the h → ∞ limit where they decay as
a power law. Thus, evanescent modes in deep water can be important in effectively
coupling the surface scatterings and prevent wave localization and complete band
gaps. Since the gap widths in any direction tend to increase at higher bands, one
might expect that complete gaps can be found at higher frequencies (or energies);
however, this is not likely either since the dispersion relations and the positions of
the gaps are very sensitive to |k| at high frequencies, and the chance that gaps in all
directions overlap each other is small.
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An interesting correspondence exists for gravity waves (uniform interface) in the
presence of periodic bottom scatterers. The shallow water depth-averaged equation

∂2
t η(r) = g∇⊥ · (h(r)∇⊥)η(r) (3.1)

is isomorphic to the acoustic wave equations in a fluid (no shear modulus). How-
ever, although complete acoustic band gaps have been found in square lattice
geometries by Sigalas & Economu (1992), (3.1) actually corresponds to uniform
compressive moduli, but different material densities in the fluid acoustic scattering
context. In other words, the speed of sound and the density difference are con-
strained such that (c1/c2)

2 = ρ2/ρ1 for the analogy with (3.1) to hold. Under these
conditions, Sigalas & Economu (1992) find no complete band gaps. Therefore, we
conclude that the periodic-bottom shallow water wave problem has no complete band
gaps.

4. Summary and conclusions
In this paper, we have presented a simple way of analysing the dispersion rela-

tion for surface flexural–gravity waves in the presence of periodic flexible surface
scatterers. A generalization of Bloch’s Theorem in a system with periodic boundary
operators is established. The method is adapted from established techniques found
in Ashcroft & Mermin (1976), Joannopoulos et al. (1995), and Sigalas & Economu
(1992) for calculating multiple scattering in electronic, optical, and acoustic phenom-
ena. Figures 2–8 encapsulate the main conclusions. The exact numerical calculations
implicitly included all evanescent modes. We have treated the most computationally
difficult case, that of sharp surface discontinuities, and conclude: (i) band gaps can
exist in flexural surface scattering of monochromatic waves; (ii) the band gaps can
increase with excitation frequency ω, at higher order; (iii) the sensitivity to depth is
weak for kxh & 0.5 (1D); (iv) the sensitivity to f and D1/D2 can be strong; (v) certain
special values of f and D1/D2 have vanishing gaps and (vi) the high dispersion in this
system prevents the formation of complete band gaps in the two-dimensional case.
The gaps discussed here are associated with non-propagating waves and correspond
to the ‘fully resonant’ scattering from a finite number of periodic bottom undulations
discussed in Davies et al. (1989) where their analyses broke down. Further exploiting
the acoustic analogy, we also conclude that complete band gaps do not appear in
periodic-bottom shallow water wave scattering.

Our description of band gaps, frequencies where water waves cease to propagate,
implies possible structures for wave damping applications such as breakwaters. Within
a large field of periodically spaced flexible plates, the band gaps determine the
standing wave response, and reflect all travelling waves from the large field of
plates. If a structure embedded in this field is susceptible to lateral wave forces, then
it may be desirable to have large band gaps where waves are standing. Periodic
surface scatterers can also function as wave frequency filters. The important result
(v) above suggests that band gaps are generally not monotonic in f and D2/D1

and there are special values of these parameters which can be targeted or avoided
depending on the application. Although it appears that no simple complete gaps
exist for periodically bottom or surface scattered waves (due to a large dispersion
in the surface scattering case, and due to uniform gravity in the shallow bottom
scattering case), by appropriately choosing the two-dimensional surface periodicity
relative to mean wind directions say, one may nonetheless shunt propagating waves
for desired band gap frequencies. The effects of directionality of externally impinging
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and internally generated waves can be inferred from the dispersion relations plotted
in figures 2 and 8. More complicated structures where the basic unit cell of periodicity
contains more that one scatterer can be treated by similar methods as described in
this paper and elsewhere (Ashcroft & Mermin 1976 and Joannopoulos et al. 1995).

We have quantitatively treated only an infinite (periodic boundary condition)
perfectly periodic array of scatterers. However, in real physical situations, boundaries
and defects exist. For example, waves generated in the open ocean may impinge on
a field of periodic scatterers, or defects may exist within a large array. Wave-induced
lateral motions of the scatterers will cause deviations from perfect periodicity only
at higher order in η, and exactly vanish at the band gaps where only standing waves
are excited. Finally, this study suggests possible applications of other mathematical
methods, traditionally used in studying wave and energy propagation in random
systems, to study waves in Marginal Ice Zones (MIZ) (Wadhams et al. 1988), finite-
sized systems, and surface waveguides and channels. It may be feasible to break ice in
certain patterns to channel surface water wave energy much like optical waveguides
(Joannopoulos et al. 1995). Defects in surface periodicity and interfacial disorder may
also lead to evanescent modes and wave localization.

The author thanks T. J. Pedley for bringing to his attention the work of D. V.
Evans, M. C. Payne for helpful discussions, M. G. Worster for comments on the
manuscript, and D. Laurie for checking the numerical code.

Appendix. Discrete translational invariance and Bloch functions
We verify Bloch’s Theorem for a velocity potential whose dynamics are governed

by a periodic boundary condition operator L(r, ω). The following derivation is an
adaptation of that given for Schrödinger’s equation in Chapter 8 of Ashcroft &
Mermin (1976). Here, the equation satisfied by the bulk velocity potential ∇2ϕ(r, z) = 0
is independent of r, z < 0, although

L(r, ω) ≡ lim
z→0

[
ρg − ∇⊥ · (σ(r)∇⊥) + ∇2

⊥(D(r)∇2
⊥)
]
∂z (A 1)

is invariant under discrete translations r → r+R, where R = niai is any vector of the
periodic lattice. Consider the translation operator TR such that

TRL(r, ω)ϕ(r, z) = L(r + R, ω)ϕ(r + R, z)

= L(r, ω)TRϕ(r, z) = (TRL(r, ω))ϕ(r, z). (A 2)

Since the operators TR and L(r, z, ω) commute in the function space defined by ϕ(r, z),
each is diagonal in this basis, i.e.

TRϕ ≡ c(R)ϕ, L(r)ϕ ≡ ρω2ϕ. (A 3)

Note that any sum of lattice vectors yields another, R+R′ = R′′. Therefore, applying
TR′ to the first of (A 3), and using the fact that two successive translations (by R and
R′) is equivalent to one by R′′,

TRTR′ϕ = c(R)c(R′)ϕ = TR+R′ϕ = c(R+ R′)ϕ. (A 4)

A bounded solution to the constraint c(R)c(R′) = c(R + R′) is given by c(R) = eiq·R.
Thus, ϕ(r + R, z) = eiq·Rϕ(r, z). Upon defining φq(r, z) ≡ eiq·rϕ(r, z), we find φq(r, z) is
periodic in R, verifying (2.15).



Band structure of surface flexural–gravity waves 349

REFERENCES

Andelman, D. Brochard, F. & Joanny, J.-F. 1987 Phase transitions in Langmuir monolayers of
polar molecules. J. Chem. Phys. 86, 3673–3681.

Ashcroft, N. W. & Mermin, N. D. 1976 Solid State Physics. W. B. Saunders, Philadelphia.

Belzons, M., Guazzelli, E. & Parodi, O. 1988 Gravity waves on a rough bottom: experimental
evidence of one-dimensional localization, J. Fluid Mech. 186, 539–558.

Black, J. L., Mei, C. C. & Bray, M. C. G. 1971 Radiation and scattering of water waves by rigid
bodies. J. Fluid. Mech. 46, 151–164.

Chou, T., Lucas, S. K. & Stone, H. A. 1995 Capillary wave scattering from a surfactant domain.
Phys. Fluids 7, 1872–1885.

Chou, T. & Nelson, D. R. 1994 Surface wave scattering at nonuniform interfaces. J. Chem. Phys.
101, 9022–9032.

Davies, A. G., Guazzelli, E. & Belzons, M. 1989 The propagation of long waves over an
undulating bed. Phys. Fluids A 1, 1331–1340.

Devillard, P., Dunlop, F. & Souillard, B. 1988 Localization of gravity waves on a channel with
a random bottom. J. Fluid Mech. 186, 521–538.

Elter, J. F. & Molyneaux, J. E. 1972 The long-distance propagation of shallow water waves over
an ocean of random depth. J. Fluid Mech. 53, 1–15.

Fernyhough, M. & Evans, D. V. 1995 Scattering by a periodic array of rectangular blocks. J. Fluid
Mech. 305, 263–279.

Fox, C. & Squire, V. A. 1990 Reflection and transmission characteristics at the edge of shore fast
ice. J. Geophys. Res. 95, 11629–11639.

Gou, S., Messiter, A. F. & Schultz, W. W. 1993 Capillary-gravity waves in a surface tensoin
gradient. I: Discontinuous change. Phys. Fluids A 5, 966–972.

Heins, A. E. 1956 The scope and limitations of the method of Wiener and Hopf. Commun. Pure
Appl. Maths 9, 447–466.

Joannopoulos, J. D., Meade, R. D. & Winn, J. 1995 Photonic Crystals: Molding the flow of Light.
Princeton University Press.

Kagemoto, H. & Yue, D. 1986 Interactions among multiple three-dimensional bodies in water
waves: an exact algebraic method. J. Fluid Mech. 166, 189–209.

Kirby, J. T. 1986 Current effects on resonant reflection of the surface water waves by sand bars. J.
Fluid Mech. 186, 501–520.

Kleinert, P. 1990 A field-theoretic treatment of third-sound localization. Phys. Statist. Sol. B 168,
539–550.

Knobler, C. M. & Desai, R. C. 1992 Phase transitions in monolayers. Ann. Rev. Phys. Chem. 43,
207–236.

Kushwaha, M. S., Halveli, P., Dobrzynski, L. & Djafari-Rouhani, B. 1993 Acoustic band
structure of periodic composites. Phys. Rev. Lett. 71, 2022–2025.

Liu, A. K. & Mollo-Christensen, E. 1988 Wave propagation in a solid ice pack. J. Phys. Oceanogr.
18, 1702–1712.

Lucassen-Reynders, E. H. & Lucassen, J. 1969 Properties of capillary waves. Adv. Coll. Interface
Sci. 126, 154.

Mathews, J. & Walker, R. L. 1970 Mathematical Methods of Physics, 2nd Edn. Ben-
jamin/Cummings Publishers.

McCall, S. L., Platzmann, P. M., Dalichaouch, R., Smith, D. & Schultz, S. 1991 Microwave
propagation in two-dimensional dielectric lattices. Phys. Rev. Lett. 67, 2017–2020.

Mei, C. C. 1983 The Applied Dynamics of Surface Ocean Waves. Wiley.

Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech.
152, 315–335.

Mei, C. C., Hara, T. & Naciri, M. 1988 Note on the Bragg scattering of water waves by parallel
bars on the seabed. J. Fluid Mech. 16, 147–162.

Meylan, M. & Squire, V. A. 1994 The response of ice floes to ocean waves. J. Geophys. Res. 99,
891–900.

Meylan, M. H. & Squire, V. A. 1996 Response of a circular ice floe to ocean waves. J. Geophys.
Res. 101, 8869–8884.



350 T. Chou

Mitra. A. & Greenberg, M. D. 1984 Slow interactions of gravity waves and a corrugated sea bed.
J. Appl. Mech. 51, 251–255.

Naciri, M. & Mei, C. C. 1988 Bragg scattering of water waves by a doubly periodic seabed. J.
Fluid Mech. 192, 51–74.

Porter, R. & Evans, D. V. 1995 Wave scattering by periodic arrays of breakwaters. Wave Motion
23, 95–120.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Numerical Recipes.
Cambridge University Press.

Sigalas, M. M. & Economou, E. N. 1992 Elastic and acoustic wave band structure. J. Sound Vib.
158, 377–382.

Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J. & Liu, A. K. 1995 Of ocean waves and
sea ice. Ann. Rev. Fluid Mech. 27, 115–168.

Wadhams, P., Squire, V. A., Goodman, D. J., Cowan, A. M. & Moore, S. C. 1988 The attenuation
rates of ocean waves in the marginal ice zone. J. Geophys. Res. 93, 6799–6818.


